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Abstract 

 Hall effects on combined free and forced convective flow of a viscous-elastic incompressible 

electrically conducting fluid between the horizontal perfectly conducting plates under the action of a 

uniform transverse magnetic field applied parallel to the axis of rotation is studied. Exact solution of 

the governing equation is obtained in closed form. It is observed that Hall current exerts stabilizing 

influence on the primary flow at the upper plate due to shear stress while at the lower plate Grashof 

number causes separation on the secondary flow. The rate of heat transfer at both the plates are derived. 

It is found that the Hall current and rotation exert reverse flow of heat at the upper plate when the 

numerical value is equal to two as the Grashof number is being referred. Mass transfer is analysed by 

solving the constitutive equations for concentration. 
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1. INTRODUCTION 

 The theory of rotating fluid is highly important in various technological 

situations determine the behavior of conducting fluid with low Prandtl number to 

which the interaction between electromagnetic force to coriolis force is subjected to 

the action of modify the mechanical behavior of the system. Mazumder et al1, Datta 

and Jana2 and Seth and Ghosh3 investigated the combined effects of free and forced 

convection flow with Hall effects in a non-rotating system neglecting induced 

magnetic field under different conditions. However, the influence of such fluid flow 

problem which lie in their application of geophysical and astrophysical interest, is the 

study of a steady free and forced convection flow with Hall effects in a rotating 
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system, has not received attention in literature where induced magnetic field is taken 

into account. 

 The MHD flow of a conducting liquid between two non conducting parallel 

plates in the presence of a transverse magnetic field was studied by Hartmann4, 

Agrawal5 and Soundalgekar6. Ghosh7 has analysed Hall effects on Hydromagnetic 

non Newtonian convective flow in a rotating channel with mass transfer. Mishra, 

Biswal and Ray8 have studied MHD free convection flow of a rotating non Newtonian 

fluid past an isothermal vertical porous plate with varied species concentration. The 

problem of Heat and mass transfer in the MHD flow of a visco elastic fluid in a 

rotating porous channel with radiative hent have been investigated by Jena, Goswami 

and Biswal9. Biswal, Ray and Mishra10 has studied hall effects an hydromagnetic 

convective flow of a viscous fluid through a rotating porous channel with heat and 

mass transfer. 

 In the present paper, we consider the effect of Hall current on the combined 

free and forced convection flow of an electrically conducting visco-elastic 

incompressible fluid between two horizontal perfectly conducting plates rotating with 

an uniform angular velocity about an axis normal to their planes under the action of a 

uniform transverse magnetic field applied parallel to the axis of rotation. Exact 

solution of the governing equations for the fully-developed flow is obtained in closed 

form. The solution in dimensionless form contains five flow parameters viz. M2 (the 

squre of the Hartmnn number), K2 (the rotation parameter), G (Grashof number), G* 

(modified Grashof number) and m (the Hall parameter). Asymptotic behavior of the 

solution is analysed for large values of K2 and M2. The shear stress at both the plates 

due to primary and secondary flows are derived. The rate of heat transfer at both the 

plates are presented numerically. It is found that there arise flow reversals in the 

primary as well as secondary flow directions for G=0 and G*=0, while Hall current 

and rotation exert a destabilizing influence on the primary flow whereas the rotation 

has a stabilizing influence on the secondary flow. Also it is noticed that there is a 

reverse flow of heat at the upper plate on increasing m, K2 for G = 2, G*=0. 
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2. FORMULATION OF THE PROBLEM AND ITS SOLUTIONS 

 Consider the steady fully-developed combined free and forced convection 

flow of an electrically conducing viscous incompressible fluid between two infinite 

horizontal perfectly conducting parallel plates y = ± L under the influence of a 

constant pressure gradient acting along x-axis and a uniform transverse magnetic field 

H0 applied parallel to y-axis about which both the fluid and plates are in a state of 

rigid body rotation with uniform angular velocity Ω. The plates are cooled or heated 

by a constant temperature gradient along the x-direction so that the temperature varies 

linearly along the plate. 

 Since the plates are infinite along x and z directions all physical quantities 

except pressure will be the function of y only. It may be easily shown that the 

following assumptions are compatible with the fundamental equations of 

magnetohydrodynamics. 

 ( ) ( )zx HHHHwuq ′′=′′= ,,,,0, 0  (2.1) 

 Under the assumptions (2.1) which correspond to the fundamental equations 

of magnetohydrodynamics in a rotating frame of reference, the equation of 

momentum and the Ohm’s law for a moving conductor taking Hall current into 

account. 

 ( ) gHJqKqvpqqq e +×+∇+∇+∇=×Ω+∇
ρ
µ

ρρ
30212).(  

   ( ){ }KCCBTT ˆ)(1 0
*

0 −−−− β  (2.2) 

 ( ) [ ]HqEHJ
H

J e
ee ×+=×+ µστω

0

 (2.3) 

where  q, E, J and H are respectively, the velocity vector, ρ, v, µe, p, σ, ωe, τe, g, β, T 

and To are respectively, the fluid density, kinematic coefficient of viscosity, magnetic 

permeability, modified pressure including centrifugal force, electrical conductivity, 

cyclotron frequency, electron collision time, gravity, the coefficient of thermal 

expansion, the fluid temperature and the temperature in the reference state. K̂ is the 

unit vector along y-axis. 
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 Assuming uniform axial temperature variation along the channel walls, the 

fluid temperature may be considered as 

 T – T0 = Nx + φ (y)  (2.4) 

 under the assumption (2.1), taking y-component on integrating the momentum 

equation (2.2), reduces to 

 P = - ρgy+βg ( ) ( ) ( ) )(
2
1 22

00 xFHHdyCCdyTT xx ++−−+−∫  (2.5) 

 Combining eqns. (2.2) and (2.3) with the help of eqn. (2.5) in dimensionless 

form, we obtain 

 ,2 2*2
2

2

3

3

FiKIGG
d
dhM

d
dFR

d
Fd

d
FdRc −−=−−+++ ηη

ηηηη
 (2.6) 

Integrating (2.6), we get  
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Px is the Grashof number, 

 G* = gβ* 2
4NL
ν

 Px, modified Grashof number 

M = µ H0L 
2

1








ρν
σ is the Hartmann number, K2 = ν

Ω 4L  is the rotation parameter 

which is reciprocal of Ekaman number, m = ωe  τe is the Hall current parameter,  F = 

u1 + iw1 and h = Hx + iHr, R is the Reynolds number, Rc is the non-Newtonian 

parameter. 
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 Equation (2.4) shows that positive or negative values of N correspond to 

heating of cooling along the channel walls. Considering Px>0, it follows from the 

definition of G and G is less than or greater than 0 according as the channel walls are 

heated or cooled in the axial direction. 

 The boundary conditions for the velocity field are 

  F = 0  at  η = ± 1 (2.9) 

 Since the plates are perfectly conducting, the boundary conditions for the 

magnetic field are 

 
ηd

dh = 0 at η = ± 1  (2.10) 

 Since the channel is symmetric at η = 0, the boundary condition for the 

magnetic field at η = 0 may be assumed as (see Nanda and Mohanty)11 

 h = 0 at η = 0   (2.11) 

 Equations (2.6) and (2.7) together with the boundary conditions (2.9) to (2.11) 

can be solved. The solution for the velocity and induced magnetic field are 

 ( ) 
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Where m1 =  α - iβ, 
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Shear stress at the plates η = ± 1 

 The non-dimensional shear stress components τx and τz at the plate η = ± 1 

due to primary and secondary flows, respectively, are  
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 The upper and lower signs in the first term of eqns. (2.15) and (2.16) 

correspond to the values at the upper plate η = 1 and that at the lower plate η= -1 

respectively.  

 It may be noted from (2.15) and (2.16) that the shear stress components τx and 

τz due to primary and secondary flows respectively, vanish neither at the upper plate 

nor at the lower plate and depend on the Hartmann number M, rotation parameter K2 

and Hall parameter m when G = 0 and G*=0. Thus it concludes and for perfectly 

conducting plates there is no flow reversal when G = 0 and G*=0 

 

Asymptotic Solutions: 

 Case I : K2>> 1 and M2 – 0 (1) – Since A2 is very large and M2 and m are 

small orders of magnitude, it can expect boundary layer type flow. For the boundary 

layer at the upper plate η = 1, writing (1 - η) = ξ, we obtain from (2.12) and (2.13). 

 u1 = βξ
λ

αξ

sin)1(
2

*
2 GGe

−−
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 (2.17) 
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Where 
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 It is evident from the expressions (2.17) to (2.20) that there arise boundary 

layer of thickness 0 (α)-1 which decreases with the increase in either K2 and M2. This 

boundary layer may be identified as modified hydromagnetic Ekman layer. 

 The exponential terms in eqns. (2.17) to (2.20) damp out quickly on ξ 

increases. When ξ ≥ α
1 , we have 
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 The expressions (2.22) and (2.23) show that in a certain core, given by ξ ≥ α
1  

about the axis of the channel, the velocity in the direction of pressure gradient given 

by u1 and the induced magnetic filed Hx vanish away while the velocity in the 

secondary flow direction given by w1 and the induced magnetic field Hx persist. Also 

the velocity w1 is unaffected by the Hall current and magnetic field. The velocity w1 

and primary induced magnetic field Hx very linearly with η and the effect of Grashof 

number on the velocity and induced magnetic field become insignificant in the central 

region. 

 

 Case II : M2 >>1 and K2 ∼0 (1) – In this case also boundary layer type flow is 

expected. For the boundary layer at the upper plate we obtain from (2.12) and (2.13) 

 u1 = 2
1

M
[(1+G*η) + (+G*-1) e-αξ (cos βξ + m sin βξ)], (2.24) 

 w1 = 2
1

M
[-M (1 –G+G*η) + (+G*-1) e-αξ (sin βξ - m cos βξ)], (2.25) 

 Hx = 2
1
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IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                          2620 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

 Hx = ( )βξββξααξ cossin)1(
4

*

+
++ −e

M
GG  (2.27) 

Where 

 α = ,
1 2m

M
+

 β = 
212 m

mM
+

 (2.28) 

 The expressions (2.24) to (2.27) demonstrate the existence of a boundary layer 

of thickness O (α)-1 which depends on both the Hall current and magnetic field. The 

thickness of this layer decreases with the increase in M2 while it increases with the 

increase in Hall parameter m. This boundary layer may be identified as modified 

Hartmann boundary layer. In the central core given by ξ ≥ 
α
1  about the axis of the 

channel, the velocity field and magnetic field become 

 u1 = 2

*1
M

GG η+− , w1 = ( )
2

*1
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GGm η+−+−  (2.29) 

 Hx = 2

*

2
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 +
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η

η , Hz = 0 (2.30) 

 It is evident from the expressions (2.29) and (2.30) that in the central region 

the secondary velocity is weak in comparison to the primary velocity. In the absence 

of Hall current the secondary velocity w1 vanishes away and the fluid will be moving 

in the direction of pressure gradient only. Also both the velocity and the induced 

magnetic field Hx vary linearly with η and the effect of Grashof number on the 

velocity and induced magnetic field become insignificant. 

 

Heat transfer Characteristics 

 The energy equation for the fully-developed flow including viscous and Joule 

dissipations, reduces to 
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 Where the fluid temperature T is a function of y only and other symbols have 

their usual meanings. 

 Using non-dimensional variable (2.8) and introducing dimensionless quantities 
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in eqn. (2.31) we obtain 
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The boundary conditions become 

 θ (-1) = 0 and θ (1) = ( )
xNLP

1φ =N1 (say), (2.34) 

 Where N1 is the temperature at the upper plate. Substituting the values of u1, 

w1, H, and Hx from (2.12) and (2.13) in eqn. (2.33) and solving the resulting 

differential equation subject to the boundary conditions (2.34), the solution for θ (η) 

may be represented as 

 θ(η) = Pr [φ1 (η) + φ2 (η) – A1 η - A4} – K1 {φ3 (η) + φ4 (η) 

 + φ5 (η) +  φ6 (η) + A2η - A3η - A5 – A6 – A7}+ )1(
2

1 η+N + φ7 (η) (2.35) 

Where φ (η) (I = 1, 2, …, 7) are functions of M, K2, m, Pr and η. Ai (i = 1, 2, …, 7) 

are function of M, K2 and m. 

 The expression of rate of heat transfer at both the plates i.e. 1±=






 η
η
θ

d
d  are 

also derived. We omit these expressions because of quite lengthy. 
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Mass transfer : 

 concentration equation is given by 

 
yd
cdD

xd
cdu

′
′

=
′
′

′
2

 ,  (2.36) 

Introducing the following non-dimensional quantities 

 Sc = 
D
ν , C = 

xPLN ′′
′φ ,  (2.37) 

in the above equation, we get 

 02

2

=+
ηη d

dCRS
d

Cd
c ,  (2.38) 

with the boundary conditions (transferred) 

 C = 1 at η = 0 & C = 0 at η = 1 

Solving the above equation, 

 We get  
c

c

RS

yRS

e
eC
−

−
=

−

1
1 )1(

, (2.39) 

Where R is the Reynolds number. 

With the boundary conditions, 

 0=′C  at 0=′y  

 0CC =′  at Ly =′  

 

3. DISCUSSION OF RESULTS 

 The numerical solutions of the velocity and the induced magnetic field are 

presented graphically versus η for various values of m2 taking G, K2 and M fixed in 

Fig.1 and 2. It is evident from Fig. 1 that for G > 0, the primary and secondary 

velocities change its direction as it move away from the upper half to the lower half of 

the channel and the velocity attains its maximum near the lower plate of the channel. 

Thus the free convection causes flow reversal in both the direction. It is observed 

from Fig. 1 that the primary velocity u1 is of oscillatory nature in the region – 1 
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≤η≤0.25 as m increases whereas it decreases with the increase in m for 0.35 ≤η≤1 and 

the secondary velocity w1 increase in the region – 1 ≤η≤0.4 with the increase in m 

and as changes its direction near η=0.6, again increases with the increase in m. In this 

case there arise a flow reversal in the primary flow direction when η≥0.35 while for 

secondary flow it appears η≥55. Fig. 2 reveals that the induced magnetic field Hx 

increases numerically with the increase in m while the induced magnetic field Hz 

increases numerically near the lower plate and decreases in magnitude in the region – 

0.5<η<0.7 and again it increases in magnitude near the upper plate. 

 Fig.3 shows the velocity components u1 and w1 for various values of Grashof 

number (G), Hartmann number (M) and Rotation parameter (K2). It is noticed that 

both u1 and w1 first rises and then falls with the distance η from the lower plate to the 

upper plate of the channel. Further the increase in the value of G increases the 

velocity components u1 and w1 represented by the solid line and dotted line curves of 

the graph. When the external magnetic field strength is stronger, there is decrease in 

the value of u1 and w1. Similar effect is marked in case of rotation parameter (K2) that 

decelerates the flow producing churning of the liquid. 

 Fig. 4 illustrates the fluid temperature for different values of Prandtl number 

(Pr). It is seen that the increase in Pr reduces the temperature (θ). 

 Fig. 5 explains the behaviour of the flow in respect of concentration. It is 

observed that the rise in the Schmidt number reduces the concentration. 
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Fig. 1 : Effects of Hall parameter on the velocity components u1 and w1 for G = 2, 

M = 5, K2 = 5. 
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Fig. 2 : Effects of Hall parameter on magnetic field components for G = 2, M = 5, 

K2 = 5. 
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Fig. 3 : Effects of G, M and K2  on the velocity components u1 and w1 for m=1.0 
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Fig. 4 : Effects of Prandtl number Pr on temperature for m = 1.0, M=2.0 and K2 =5.0 
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Fig. 5 : Effects of Schmidt number Sc on concentration for m =1.0, M = 2.0, K2=5.0 

and R=2.0 
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Table – I 

Shear stress τx and τz at η = 1 for M = 5 and K2 = 3 

G  τx   τz  

m2 0.5 1.0 1.5 0.5 1.0 1.5 

0.0 -0.18648 -0.18688 -0.19111 -0.06542 -0.09938 -0.12522 

2.0 0.12541 0.13681 0.14989 -0.11420 -0.17360 -0.22086 

4.0 0.43729 0.46050 0.49091 -0.16298 -0.24782 -0.31649 

6.0 0.74918 0.78419 0.83192 -0.21176 -0.32205 -0.41214 

 

Table – II 

Shear stress τx and τz at η = -1 for M = 5 and K2 = 3 

G  τx   τz  

m2 0.5 1.0 1.5 0.5 1.0 1.5 

0.0 -0.18648 -0.18688 -0.19111 -0.06542 -0.09938 -0.12522 

2.0 0.49836 0.51057 0.53212 0.01663 0.02515 0.02958 

4.0 0.81025 0.83426 0.87314 -0.03217 -0.04906 -0.06605 

6.0 1.12214 1.15796 1.21415 -0.08092 -0.12529 -0.16169 

 

 The numerical results of shear stress components τx and  τz at both the plates 

due to primary and secondary flows, respectively are presented in Tables I and II for 

various values of G, m2 taking M = 5 and K2 = 3. Table I shows that the shear stress 

component τx at η=1 due to primary flow increases with the increase in either m2 or G 

while the shear  τz at η=1 increases in either m2 or G while the shear stress 

component τz at η = 1 increases in  magnitude with the increase in either m2 or G. 

Table II shows that the shear stress component τx at η = -1 due to primary flow 

increases with the increase in either m2 or G while the shear stress component τz at η 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                          2630 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

= -1 increases with the increase in G for fixed m2 whereas it decreases with the 

increase in m2 for fixed value of G. Also it is noticed that there arise separation of 

flow on increasing G for fixed value of m2. 

 

Rate of heat transfer : 

 The rate of heat transfer at both the plates i.e. 1±=




 ηη
θ

d
d are presented in 

Table III, for various values of m and G taking M = 5, K2 = 5, N1 = 1 and Pr = 0.25. It 

is observed from Table III that the rate of heat transfer 1d
d =η







η
θ  decreases with 

the increase in either m of G whereas the rate of heat transfer 1d
d −=η







η
θ  increases 

with the increase in G. Also it increases with the increase in m for G = 0 (forced 

convection) and is of oscillatory nature on increasing m for G ≠ 0. It is noticed that 

there arise reverse flow of heat at the upper plate on increasing m for G=2. Thus we 

conclude that the rotation, Hall current and heat transfer by free convection induce 

reverse flow of heat at the upper plate. 

 

Table – III 

The rate of heat transfer 
1=










ηη
θ

d
d for M = 5 and  K2 =5 

G  1d
d =η







η
θ    1d

d −=η






η
θ   

m2 0 0.5 1.0 1.5 0 0.5 1.0 1.5 

0 0.16203 0.14530 .012817 .11252 .33797 .35469 -.7183 .38747 

2 0.06223 0.00335 -001608 -.04228 -0.56297 .58753 -52640 -54701 

4 -.22873 -.39892 -.45460 -.53436 -97919 1.08069 .97523 1.04382 

10 -1.02249 -3.16775 -3.53574 -4.03421 3.37513 4.12218 4.08732 4.55787 
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Concentration gradient : 

 The concentration gradient is given by 
1d

dC

±=η








η

  for M =5, K2 = 5, m = 1.0 

 
1

1 d
dcCG

=ηη
=   

1
2 d

dcCG
−=ηη

=  

Table – IV 

Sc 
R 

0.81 1.5 2.7 

 CG1 CG2 CG1 CG2 CG1 CG2 

1.0 0.2203 0.2024 0.2392 0.2354 0.2477 0.2468 

2.0 0.3700 0.3251 0.4340 0.4120 0.4737 0.4457 

3.0 0.7830 0.4542 0.5907 0.5602 0.6733 0.6225 

4.0 0.5762 0.5381 0.7221 0.6125 0.8489 0.7239 

5.0 0.6571 0.5270 0.8364 0.7138 1.0052 0.9856 

 

 Table – IV presents the values of concentration gradient CG1 and CG2 for 

various values of Reynolds number (R) and Schmidt number (Sc). It is observed that 

the increase of Sc increases both CG1 and CG2. Similar result is obtained in case of 

rise of R. 
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Conclusion: 

 Theoretical study of Hall effects on hydromagnetic non-Newtonian convective 

flow in a rotating channel with mass transfer reveals the following results. 

i) The primary velocity u1 is of oscillatory nature in the region −1≤ η ≤ 1. 

ii) The secondary velocity w1 increases in the region −1≤ η ≤ 0.4 with the 

increase in Hall parameter. 

iii) The induced magnetic field Hx increases numerically with the increase in 

m. 

iv) Temperature decreases with the increase of Prandtl number Pr. 

v) Concentration decreases with the increase of Schmidt number Sc. 

vi) The shear stress component τx at η = 1 due to primary flow increases 

with the increase in either m2 or G while the shear stress component τz at 

η=1 decreases in magnitude with the increase in either m2 or G. 

vii) The rate of heat transfer Nu1 decreases with the increase in either m or G 

whereas the rate of heat transfer Nu2 increases with the increase in G. 

viii) Increase in the Schmidt number Sc increases both the concentration 

gradient CG1 and CG2 at the upper and lower plate of the channel. 
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